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A possible mechanism for the occurrence of the phenomenon of erratic drqt of bubbles 
in liquids subjected to acoustic waves was proposed by Benjamin & Ellis (1990) who 
showed that nonlinear interactions between adjacent perturbation modes expressed 
in terms of spherical harmonics of any order may lead to the excitation of mode 1 
which is equivalent to a displacement of the bubble centroid. We show that indeed 
such a mechanism can give rise to a chaotic process at least under the conditions 
experimentally investigated by Benjamin & Ellis (1990). In fact we examine the case 
in which the angular frequency o of the incident wave is sufficiently close to both the 
natural frequency of mode n + 1 (0,+1) and twice the natural frequency of mode n 
( 2 0 4  thus exciting simultaneously a subharmonic mode n and a synchronous mode 
n + 1. The value of n is set equal to 3 in accordance with Benjamin & Ellis’ (1990) 
observation. A classical multiple scale analysis allows us to follow the development of 
these perturbations in the weakly nonlinear regime to find an autonomous system of 
quadratically coupled nonlinear differential equations governing the evolution of the 
amplitudes of the perturbations on a slow time scale. As obtained by Gu & Sethna 
(1987) for the Faraday resonance problem, we find both regular and chaotic solutions 
of the above system. Chaos is found to develop for large enough values of the 
amplitude of the acoustic excitation within some region in the parameter space and 
is reached through a period-doubling sequence displaying the typical characteristics 
of Feigenbaum scenario. 

1. Introduction 
The dynamics of gas bubbles in a liquid subjected to an acoustic wave has been 

widely explored both in the context of technical problems (like detection and preven- 
tion of cavitation, underwater acoustic sensing, effects of ultrasound on microcavities 
in physiologic liquids, microchemistry), and to investigate some interesting theoretical 
questions arising from peculiar behaviour displayed by bubbles, like the so-called 
effect of ‘erratic drift’, a phenomenon of chaotic self-propulsion experimentally ob- 
served and reported by various authors (Gaines 1932; Kornfeld & Suvorov 1944; 
Strasberg & Benjamin 1958; Benjamin & Ellis 1990). 

Early research work on radially oscillating bubbles as possible sources of under- 
water sound date back to Rayleigh (1917), who first stated the well-known nonlinear 
equation governing the oscillations of the bubble radius. Indeed a pure radial oscilla- 
tion of the bubble surface (breathing mode) is obviously the simplest kind of motion 
one can expect to be set up when the initial/boundary conditions bear spherical 
symmetry. This may occur whenever the sound wavelength is much greater than the 
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mean bubble radius, so that the sound field is ‘felt’ by the bubble as almost uniform 
in space and pulsating in time. 

Shape oscillations are also possible, and can be analysed in terms of a superposition 
of spherical harmonics each having its own natural frequency, say a,. 

A linear stability analysis of the basic radial motion was performed by Plesset & 
Mitchell (1950) who found that the governing equation for the nth mode perturbation 
may be reduced to a Hill equation which, for small wave amplitudes, reduces to a 
Mathieu equation (Eller & Crum 1970; Benjamin & Strasberg 1958; Hsieh & Plesset 
1961). 

The well-known results about the stability of solutions of the Mathieu equation 
can then be used to show that under suitable conditions n-th components of bubble 
surface distortion characterized by frequency half that of the incident wave (a) 
(subharmonic response) or by the same frequency (synchronous) or by a multiple 
frequency (ultraharmonic) may grow depending on how close the value of w is to 
2a,, w f l , . ~ w f l  or a smaller integral fraction of w,. 

Experiments (Elder 1959; Gould 1966) confirm that such surface oscillations arise 
as a bifurcation from the basic radial motion, occurring in relatively low-viscosity 
liquids as the amplitude of the acoustic field exceeds a threshold dependent on the 
relevant parameters of the problem. Further increase of the wave amplitude may lead 
to successive bifurcations and eventually to a chaotic surface agitation. 

The weakly nonlinear development of an unstable mode was investigated by Hall & 
Seminara (1980), both in the subharmonic and in the synchronous cases. Various types 
of bifurcations (supercritical, subcritical, transcritical and secondary) were shown to 
occur under various conditions. 

The investigation of finite-amplitude oscillations allowing for nonlinear interac- 
tions between different modes seems capable of explaining the physical mechanisms 
underlying some experimentally observed effects. In this direction, let us recall re- 
sults obtained by Longuet-Higgins (1989a, b), who has shown how the emission of 
monopole radiation of sound can be due to the interaction of distortion modes at 
second order. Moreover Benjamin & Ellis (1990), developing ideas previously out- 
lined by Saffman (1967), have shown that nonlinear interactions between two adjacent 
modes (say n and n + 1) can give rise to the excitation of a mode 1 component of 
the velocity potential of the surrounding fluid. They pointed out that a Legendre 
polynomial of order 1 describes a perturbation of the sphere which corresponds to a 
translation of the bubble. Its excitation then provides a possible mechanism for the 
above-mentioned phenomenon of ‘erratic drift’. 

A great deal of interest has been recently been devoted to parametrically excited 
mode interactions in surface waves, from which the occurrence of chaotic behaviour 
is shown to be possible when some relevant parameters attain critical values, and 
in particular when conditions of external or internal resonance are met (Miles 1984; 
Ciliberto & Gollub 1985; Holmes 1986; Gu & Sethna 1987; Simonelli & Gollub 
1989; Feng & Sethna 1989; Kambe & Umeki 1990). The strict analogy between the 
hydrodynamical problems of surface waves in oscillating containers and acoustically 
induced bubble oscillations (Lamb 1932, Art.275; Benjamin 1987; Longuet-Higgins 
1989a) suggests that one may gain further understanding of the latter processes using 
some tools developed in the former context. Mei & Zhou (1991) have studied the 
interaction between the breathing mode and one or two distortional modes requiring 
both that the former be at resonance with the externally forcing wave and that an 
internal resonance condition be met by interacting modes. More recently Feng & Leal 
(1994) have examined the case when the frequency ratio of the volume mode and one 
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shape mode is assumed to be close to two-to-one, detecting various bifurcation paths. 
Both of these works however allow for a feedback effect of nonlinear interactions 
on the breathing mode at first order, which may lead to instability and chaotic 
oscillations in the radial motion itself. 

In the present work a different mechanism is envisaged: the radial oscillation mode 
plays the role of transferring energy from the external pressure field to the subhar- 
monic oscillation of one distortion mode, without being affected at leading order, while 
instability and chaos occur due to nonlinear interactions between distortion modes. 

Experimental evidence (Benjamin & Ellis 1990) shows that two or at most three 0s- 
cillation modes are dominant in the bubble shape distortion when the wave amplitude 
threshold values provided by linear stability theory are exceeded. The same linear 
theory suggests that those modes which are closer to the wave angular frequency w 
or to an integral fraction of it are most likely to be excited, subharmonic oscillations 
being the most unstable. Thus in the present paper we perform a nonlinear stability 
analysis of bubble surface oscillations allowing for the interaction of two adjacent 
modes of the bubble shape distortion. 

Following Hall & Seminara (1980) we examine the case in which the angular 
frequency w of the incident wave is sufficiently close to both 203 and w4, thus 
exciting respectively a subharmonic oscillation of mode 3 and a synchronous one of 
mode 4. Using the multiple-scale perturbation method we find that these oscillations 
are modulated by slowly varying amplitudes, the evolution of which is governed by 
an autonomous system of quadratically coupled nonlinear equations, displaying both 
regular and chaotic solutions. 

A similar system has been found by Gu & Sethna (1987) for resonant surface 
waves of a liquid in a rectangular container subjected to vertical oscillations under 
particular resonance conditions. 

We discuss the behaviour of the solutions and find that, within a particular 
range of values of w when the wave amplitude is increased, they undergo successive 
bifurcations leading, through a period-doubling sequence (Feigenbaurn scenario), to 
a chaotic state. The excitation of two adjacent modes passively drives at second 
order the development of mode 1, the amplitude of which may also display a chaotic 
behaviour. 

The procedure followed in the rest of the paper is as follows: in 92 we formulate 
the hydrodynamic problem and state the basic radial motion of the cavity; in 93 
the results of linear stability analysis of shape oscillations are reviewed; in 94 a 
nonlinear stability analysis of two interacting modes is performed; in 95 the resulting 
amplitude equations are studied while in 96 numerical experiments are reported. Some 
conclusions follow in 97. 

2. Formulation and basic radial oscillation 
Let us consider a cavity immersed in a liquid filling an unbounded region character- 

ized by an average ambient pressure P: (the asterisk denotes dimensional quantities). 
A permanent, non-condensable gas fills the cavity with equilibrium pressure Po.. (We 
neglect the effects of the vapour present in the cavity.) At equilibrium the bubble 
radius & reads 

where is surface tension. 
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Let us now assume the liquid to be irradiated by an acoustic wave with wavelength 
sufficiently large compared with & to be 'felt' by the bubble as an oscillation of the 
pressure at infinity of the form P i (  1 + E cos cot') with E ,  co amplitude and frequency 
of the wave respectively and t' time. We wish to investigate the response of the 
bubble to a small-amplitude acoustic excitation under the assumption that the latter 
be 'weak', i.e. 

E Q 1 .  (2.2) 
The analysis will be based on the following further assumptions: 
(i) the equilibrium radius & will be assumed to be constant or to vary (owing to 

any mechanism like rectified diffusion) on a time scale much larger than the time 
scales involved in the instability process under investigation; 

(ii) damping effects (viscous, thermal or acoustic) will be lumped into some linear 
damping coefficients introduced into the final amplitude equations; 

(iii) motion of the gas inside the cavity will be ignored and the state of the gas will 
be assumed to be isothermal. 

Assumption (iii) implies that the internal pressure in the cavity is uniform: this is 
justified if the bubble radius is small compared with the wavelength of the sound wave. 
Furthermore the thermal penetration depth in the liquid must be small compared 
with the bubble radius for the gas to behave isothermally. 

The interested reader is referred to Prosperetti (1974) and Plesset & Prosperetti 
(1977) for a detailed discussion of the implications of assumptions (i) and (ii). 

We start by assuming the flow as inviscid irrotational, hence governed by the 
Laplace equation for the velocity potential 4* along with kinematic and dynamic 
conditions at the interface and the condition that the pressure at infinity be forced 
by the acoustic wave. An alternative equivalent formulation from the standpoint of 
Hamiltonian theory has been proposed by Benjamin (1987). 

Let us describe the motion of the cavity by the following equation for the interface: 

(2.3) F*(r* ,  8, cp, t') = 0, 

with r*,  8, cp spherical polar coordinates, and define dimensionless variables as in Hall 
& Seminara (1980), namely 

t = t * ( & )  , (F* , r ' )  = &(F,r) ,  p* =PAP, 4* = & (5) 4.  (2.4) 
1/2 112 

The governing differential problem for 4 and F reduces to 

v24 = 0, (2.5) 

where V(t) is the instantaneous volume of the deformed bubble, n is the unit vector of 
the local outward normal to the interface, s2 is the dimensionless form of the forcing 
frequency and S is the inverse of a Weber number squared. The parameters SZ and S 
(along with e) govern the phenomenon under investigation and read: 

Also notice that the dimensionless fluid velocity is defined here as -V+. 
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The above system allows for the simplest flow solution in the form of a purely 
radial motion of the fluid driven by the interface in the form 

R2R 4 = y ,  F = r - R ( t ) = O .  

Substituting from (2.9) into (2.5)-(2.7) the differential problem is reduced to a gener- 
alized Rayleigh equation for R ( t )  which admits periodic solutions readily obtainable 
in terms of power series of the small parameter E .  Provided Q does not attain a value 
close to an integral fraction or multiple of the natural frequency QO of the 'breathing 
mode' of the bubble one finds 

R = 1 + .Pi(t) + 0 ( c 2 )  , (2.10) 

where 

and 
(2.11) 

(2.12) 

Q i = 3 + 4 S .  (2.13) 

3. Linear stability of axisymmetric shape perturbations 

The linear stability of the basic radial oscillatory motion (2.10), (2.11) was inves- 
tigated by Benjamin & Strasberg (1958), Hsieh & Plesset (1961) and Eller & Crum 
(1970). We briefly recall here the main results. 

Let 

(3.1) 
a2 

fl=O 

be the perturbed configuration with g,(t), &(t)  infinitesimal amplitudes and P,(p)  
( p  = cos 0) a Legendre polynomial of order n. Since the set of orthonormal functions 
P,(p) is complete the representation (3.1), (3.2) is suitable to describe any arbitrary 
infinitesimal and axisymmetric perturbation. Also notice that (3.2) satisfies the Laplace 
equation in spherical coordinates and the boundary condition which forces 4 to decay 
as r -+ co. 

Requiring that the solution (3.1), (3.2) should also satisfy the linearized form of 
the kinematic and dynamic boundary conditions (2.6), (2.7) one ends up with the 
following Mathieu type equation (higher-order terms, which can be found in Hall & 
Seminara (1980), will not be necessary for the present analysis) : 

d2Y, - + [a, + (b ,  cos 2T)e + 0(c2)]  y, = 0 , 
dT2 

where 

y, = R3I2f,, T = i Q t ,  

(3.3) 

(3.4) 
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FIGURE 1. Stability chart showing critical stability curves for subharmonic (-) and synchronous 
(- - -) oscillations of various modes (after Hall & Seminara 1980). 

2 

a , = ( % ) ,  (3 .5~)  

(3.5b) 

Here SZ, is the natural frequency of the nth mode given by 

Q,, = [4s(n2 - l)(n + 2)1'/~. (3.6) 

Y ,  = exp(cnT)nn(T) (3.7) 

The solution of (3.3) is known to be of the form 

where cn is the growth rate and n,(T) is a periodic function of T .  A classical 
stability analysis for the solutions of the Mathieu equation shows that in the plane of 
parameters (a,, E )  unstable regions (i.e. with Re (0,) > 0) exist in a neighbourhood of 
the points ( N 2 ,  0) with N = 1,2,. . .. For N = 1 solutions are subharmonic, for N = 2 
synchronous and for N > 2 ultraharmonic. 

Referring these results to the plane ( ~ , 0 )  it will be clear that for any 0 sufficiently 
close to the natural frequency 0, of the nth mode the corresponding a, will be close 
to unity, so that stability regions for subharmonic oscillations of each mode can 
be drawn in a neighbourhood of each 0,. The same reasoning repeated for those 
values of 0 which lie close to iSZ, leads to finding stability regions for synchronous 
oscillations and so on. The resulting stability chart is shown in figure 1. 

It should be noticed that the mode n = 1 is excluded since in this case the derivation 
of (18) ceases to be valid. This corresponds to the fact that the natural frequency of 
mode 1 vanishes. 

Let us finally recall that for small E the growth rate of subharmonic perturbations 
( N  = 1) obtained from linear theory is O ( E )  while it is O(e2) for synchronous or 
ultraharmonic perturbations ( N  2 2). 
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We now assume the forcing dimensionless frequency 0 to lie between 0 3  and i 0 4 :  

(4.1 ) 

4. Nonlinear evolution of two adjacent modes 

0 = fi3(1+ i3e)  = ;a4 (1 + ;A4€) , 

with &,A4 O( 1)  parameters, i 3  c 0, 1 4  > 0. 
The choice of n = 3 arises from the experimental observations of Benjamin & 

Ellis (1990). However, the analysis would be qualitatively similar for any pair of 
subharmonic-synchronous modes both excited in a neighbourhood of the forced 
frequency 0. 

Furthermore let us take advantage of the fact, suggested by the linear theory, that 
subharmonic perturbations for low values of e evolve both on the ‘fast’ time scale 
described by the variable T and on the ‘slow’ time scale described by the ‘slow’ 
variable z defined as 

z = e T .  (4.2) 
Thus we set 

and attempt to analyse the nonlinear development of the two adjacent modes 3 
and 4. 

Let Z 3 ( z )  and Z4(z) be the slowly varying amplitudes of modes P3 and P4, whose 
fast time dependence is respectively subharmonic (hence proportional to eiT) and 
synchronous (hence proportional to e2iT). Furthermore let cx and eY be the respective 
orders of magnitude of the above modes, with x and y exponents to be determined. 
The condition which determines the values of x and y is the requirement that 
secular terms arising from nonlinear interaction between the perturbations, from 
linear interactions of the perturbations with the basic flow and from the slow time 
dependence of the amplitudes Z 3  and Z4 should vanish. 

One readily finds that the spatial P3 structure and the fast (subharmonic) time 
dependence of mode 3 are reproduced by: 

interactions of modes 3 and 4 at order cx+Y; 
interactions of mode 3 with the basic flow at order ex+’ ; 
slow time dependence of mode 3 at order ex+’. 

We then require that 

Similarly the spatial P4 structure and the fast (synchronous) time dependence of 
x + y = x + l .  (4.4) 

mode 4 are reproduced by: 
interactions of mode 3 with itself at order c2’ ; 
slow time dependence of mode 4 at order @‘+I. 

Hence we also require that 

From (4.4), (4.5) it then follows that 
2 x = y + 1 .  (4.5) 

x = y = l .  (4.6) 

Therefore in order to remove the occurrence of secular terms at second order, we 
assume the following expansions : 

F = r - [R(t)  + efl + e2f2 + O(e3)l (4.7) 



264 

with 

D. Zardi and G. Seminara 

and 

(4.10) 
R2R 

4 = + e+l + e242 + 0(e3) 

with 

(4.11) 

(4.12) '$2 = 2'$32(T, z)P3 + ;5'$42( T ,  z)P4 + orthogonal terms, 

which we feed into the kinematic boundary condition (2.6) and the dynamic boundary 
condition (2.7) using (4. l), (4.2) and (4.3). Hereafter the kinematic boundary condition 
and the dynamic boundary condition will be referred to as KBC and DBC respectively. 
Notice that the notation employed above has to be read as follows: the first index 
refers to the order of the spatial Legendre mode while the second index identifies the 
order of magnitude of the perturbation. 

We then perform the scalar product of (2.6)-(2.7) with P3,P4 and obtain the fol- 
lowing differential problems at the various orders of approximation. 

1 1 

1 1 

'$1 = 2'$31(T,z)P3 + -p'$41(T,z)P4r 

O(e):  

mode P3 

mode P4 

These systems are readily solved in the form 

f31 = z3(z)eiT + c.c., 
'$31 = (iZ3(z)eiT + c.c.,) 

f41 = ~ 4 ( z ) e ~ ~ ~  + c.c., 
'$41 = hi24 ( 1 ~ 4 ( z ) e ~ ' ~  + c.c.,) 

(4.15) 

(4.16) 

(4.17) 
(4.18) 

(4.19) 
(4.20) 

where C.C. stands for complex conjugate and Z3,Z4 are complex functions of the slow 
variable z to be determined at higher order. 

O ( 2 ) :  

At this order interactions reproduce a second-order component of mode P3 with 
the same fast time dependence; so does the interaction with the basic flow, as already 
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known by linear stability analysis. Indeed we find: 

265 

- i (Q - i ~ 3 )  R123 + ( & ~ 3  - 

+ NST, (4.21) 

DBC 

i Q 3 4 3 2 , T  + losf32 

+ (10s - iQ2 - + dQ2"3) R1Z3 

+ $ (60s - iQ;24' - iQi + ;Q3Q4) Z3Z4] eiT + NST, (4.22) 

where NST stands for non-secular terms. 
From (4.21), (4.22) a differential equation for f32 follows: 

(4.23) 

. dZ3 
21323 - 21- + YR123 + 

dz 

The suppression of secular terms requires that the following amplitude equation be 
satisfied : 

- = -i,I3~3 - i Y ~ 1 2 3  - i;Z3z4. (4.24) 
dZ3 
dz 

Similarly interactions reproduce a second-order P4 component with a synchronous 
time dependence. We find: 

KBC 

DBC 

Proceeding as before it follows that 

f42,TT + 4f42 = e2iT + NST. (4.27) 

Removal of secular terms then leads to a second amplitude equation in the form 

So far we have neglected the effect of viscosity and assumed the liquid motion to be 
inviscid irrotational. Indeed in the case of shape oscillations the neglect of viscous 
effects is justified only if the thickness of the Stokes boundary layer over the bubble 
surface, namely 6' = ( ~ v / w ) ' / ~  (v being kinematic viscosity), is much smaller than 
the bubble radius (Lamb 1932, Arts. 352-3; Longuet-Higgins 1989b, $4). 
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6 

FIGURE 2. Different stability regions corresponding to parameter values as specified in $5. 

The effect of viscosity is a weak dissipation of energy, which we take into account 
by introducing in the amplitude equations suitable linear damping terms, whose 
coefficients are given in the form suggested by Lamb (1932, n. 355) for free oscillations, 
namely 

(4.29) pi = (2n + l)(n + 2)-. 

The dimensionless boundary layer thickness defined as 

V 

% 

6' 6 = -  
R o '  

(4.30) 

will be assumed to scale in the form 

6 = a(€)€ (4.31) 

with a - O(1). As a consequence the effect of viscosity will be incorporated in the 
amplitude equations (4.21), (4.25) by means of linear damping terms whose coefficients 
will be 

Pn = (2n + l)(n + 2)a . (4.32) 
In the present case (n = 3) we have respectively 

p3 = 3% , p 4  = 54Lx . (4.33a, b) 

5. Amplitude equations 

P3 and P4 finally reads 
The system of equations governing the slow variation of the amplitudes of modes 
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Let us introduce for convenience the following rescaled variables : 
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(5.3) 

Then the system becomes 

- = - (i23 + p3)z3 + ip3Z3 - iZ3z4 , dz3 
dz 

- _ -  dZ4 - (i24 + p4)z4 - izi . 
dz 

(5.4) 

(5.5) 

Notice that the above system can be reduced, by means of suitable parameter and 
variable transformations, to that found by Gu & Sethna (1987). The discussion of the 
solutions of (5.4), (5.5) depends on the nature of the coefficients and their dependence 
on the physical parameters governing the phenomenon under examination. Such a 
discussion is given below and reveals some interesting features. 

5.1. Fixed points 
Fixed points of the above differential system are solutions of the algebraic system 

The latter is invariant under substitution of z3 with -z3. This implies that fixed points 
always occur in couples having the same values for z4 and opposite values for z3. 

The origin is always a fixed point. Then let us look for non-trivial solutions. From 
(5.7) we have at once 

Substituting into (5.6) and writing for convenience z3 = r3 exp(i93), the former can be 
split into 

r; + 2(8384 - 1 3 1 4 b - i  + (2: + 8: - Pu:>(P,' + 4) = 0 7 

sin(2W = - (P3(842 + 4) + 844 , 

cos(293) = - (A,(/?," + 2:) - 24r3 . 

(5.9) 

(5.10) 

(5.11) 

An inspection of coefficients shows that (5.9) admits at most one positive solution 

1 

P3 
1 

P3 

provided the following conditions are simultaneously fulfilled : 

(5.12) 

n;+p;-p:<o. (5.13) 
The former condition is satisfied for all points lying on the right of curve A in figure 2, 
while the latter holds for all points on the right of curve B. Notice that this curve 
corresponds to the marginal stability curve of linear theory when a weak viscous 
damping is included. 

To each solution of (5.9) however two distinct values for 93 correspond, both 
satisfying (5.10), (5.11) and differing by n, as expected due to the already noted 
symmetry. 
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FIGURE 3. Bifurcation diagram. 

6 

When (5.12)-(5.13) are satisfied the solution of (5.9) reads 
112 

r3 = (A324 - P3P4 + ( P 3 4  + 842) - (A384 + 1 / 4 P 3 ) y 2 )  (5.14) 

Then we obtain from substitution into (5.10)-(5.11) two values for 93: 

$32 = 831  + 77: . 
The (unique) corresponding value for z4 is given by (5.8). 

(5.15) 

(5.16) 

5.2. Stability of fixed points 
The characteristic polynomial evaluated in an arbitrary point z3 = x3+iy3, z4 = x4+iy4 
reads 

P(A) = [(p4 + 
4- 4(X: 

+ 2 3  [-y; + (P3 + 
Y:) [(P4 f L)(P3 + A) - 13241 + 4(x; 4- yt)2 . 

+ A: - ( ~ 4  + , ~ 3 ) ~ ]  

(5.17) 

When the point is the origin, the roots are readily found and read 

, (5.18a, b) 

= - ~ 4  + i ~ 4  A ( ~ )  = -p4 - . (5.1% d )  

We conclude that the origin is always a stable fixed point - a sink (A4 # 0) or an 
inflected node (A4 = 0) - for the mode 4, while it may be unstable with respect to the 
mode 3 if 11/31 exceeds p3 by a sufficiently large amount that gives A(') > 0. 

112 
$1) = -p3 + (A; - p y 2  , = -p3 - (A; 
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FIGURE 4. Two-sided limit cycle at E = 0.2950. (a )  Projection over the (x3,y3)-plane; (b) projection 
over the (x4,y4)-plane; (c) power spectrum of x3(t). 

When non-trivial fixed points exist, rather than finding explicitly the corresponding 
eigenvalues we are interested in determining their signs, which are provided by the 
Routh-Hurwitz criterion (Pearson 1983, p. 254). 

The characteristic polynomial may be written in the form 

P(A) = 54A4 + 53A3 + 52A2 + J lA+ 50 (5.19) 

where 

5 4  = 1 9 

51 = 2P3(Pi + 1:) + 4r;(P3 + P4) , 
53 = 2(P3 + P 4 )  , 52 = P: + 1: + 4(y32 + B3P4) , (5.20~-c) 

(5.20d, e) 

According to the above criterion, the fixed points are stable if the following inequal- 
ities hold : 

50 = 4132 [P3P4 - A314 + r i ]  . 

& > O ,  51 > o ,  5354>0,  (5.2 1 a-c) 

J1 (5253  - 5154) - 505; > 0 . (5.2 1 d) 

While conditions (5.21~-c) are always fulfilled, (5.21d) holds only for particular values 
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FIGURE 5.  Double orbit at E = 0.2990. 

of the parameters. Substituting from (5.20a-e), condition (5.21d) can be written 

Notice that the first term is always positive; therefore the above condition is not 
satisfied only if 

1: -k a,' + 2P3P4 + 21314 < 0 . (5.23) 
The region on the right of curve C in figure 2 corresponds to points at which (5.21d) 
is not verified: when the characteristic parameters of the system are varied so that 
the representative point on the (e,Q)-plane crosses the curve from left to right, the 
fixed point undergoes a Hopf bifurcation and two symmetric limit cycles appear. 

6. Numerical experiments 
In order to explore the behaviour of solutions of the system (5.4)-(5.5) a large 

number of numerical experiments was performed employing a fourth-order Runge- 
Kutta method. We have detected the occurrence of various successive bifurcations 
of the solutions as the wave amplitude E was increased with Q lying in the range of 
wave frequencies for which a Hopf bifurcation has been seen to take place. 
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In the following we summarize the typical results obtained when considering the 
case of helium bubbles in water (cf. Benjamin & Ellis 1990) with typical equilibrium 
radius & = 0.5 mm. We have assumed the following parameter values: surface tension 
B = 0.074 N m-l, water density p = 998 kg m-3, viscosity v = m2 s-l, ambient 
pressure PA = 101325 Pa, at 20°C. We fix the wave frequency at o = 7.660 kHz 
corresponding to i2 = 0.38. 

In order to follow the bifurcation pattern as E is varied, we have plotted a bifurcation 
diagram obtained through successive Poincarh sections (Parker & Chua 1989). To 
this purpose it seemed convenient to introduce the following change of variables, 
consisting of a rotation and rescaling over the (x3,y3)-plane and a translation over 
the (x4, y4)-plane: 

1 1 
r3 r3 

<3 = -(x3 cos $3 + y3 sin $3) , q3 = -(-x3 sin $3 + y3 cos $3) (6.la, b)  

YL 

(6.1~) 

(6 . ld )  

This choice was aimed at eliminating the rotation of fixed points, and hence also of 
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FIGURE 7. Chaos at 6 = 0.2997. 

the outcoming attractor, when c is varied: in the new coordinates the fixed points 
are always (-1,0,0,0) and (1,0,0,0), so that in this 'intrinsic' frame of reference only the 
relative shape of the attractor is changed as the wave amplitude is increased. 

We have chosen as intersection surface for Poincare sections the hyperplane t3 = 1. 
Then for each value of c we have recorded the second coordinate of the points at 
which the orbit intersects the plane, after the transient had died out, for a consistent 
number of periods. The resulting diagram is shown in figure 3. The first bifurcation 
from a stable fixed point to a limit cycle occurs at f = (0.23995 & 0.00005) as given 
by (5.21d) (figure 4). As c is increased, the mean radius of the cycle increases. At 
E = (0.24775 & 0.00005) an incomplete bifurcation sequence takes place (Thompson 
& Stewart 1986, p. 172). At E = (0.28955 & 0.00005) a saddle-node bifurcation occurs, 
with the appearance of an unstable orbit. At c = el = (0.29829+0.00005) a first period 
doubling occurs (figure 5) followed by a second one at c = €2 = (0.29917 f 0.00001) 
(figure 6), a third one at c = €3 E (0.2993575 f 0.0000005) and so on until a chaotic 
state is reached (figure 7). 

Figure 8 shows an enlargement of a bifurcation diagram from which it is possible 
to see in more detail the succession of period doublings. The values of c at which 
bifurcations occur satisfy fairly well the Feigenbaum criterion, namely : 

= 4.6692016.. . fn-1 - f n - 2  lim rn = lim 
n+m n+m en --en-l 

as shown in table 1. 
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n En A E n  En - En-1 r n  

1 0.2982900 
2 0.2991700 0.0008800 2.5% 
3 0.2993575 5 x lop7 0.0001900 f 5.5% 4.63 f 8% 
4 0.2993980 5 x lo-’ 0.0000405 f 2.5% 4.69 f 8% 

TABLE 1. 

We also computed the correlation dimension d of the outcoming strange attractor, 
defined as (Moon 1987, p. 216): 

. logC(r) 
d = lim ~ 

r-0 logr 

where 

1 number of points over the attractor 
C(r) = lim - such that their distance apart is smaller than r ’ 

N being the total number of points of the attractor considered. 
The resulting value for the dimension of the final chaotic attractor turns out to be 

d = 1.58 , 

which was obtained as usual (Parker & Chua 1989, p. 188) by evaluating the slope 
of the plot of log C versus log r in its middle range (figure 9). 

According to Benjamin & Ellis (1990) the velocity of the bubble centroid along the 
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FIGURE 9. Log-log plot of the correlation function C ( r )  of the attractor ( E  = 0.2997). The slope of 
the curve in the linear middle part gives the required correlation dimension of the attractor. 

axis of symmetry is given, in dimensional form, by 

fl=2 

which in the present case reduces to 

w* = m,j3f4.2 + 0 ( € 3 )  . 

w * = -  2 ' R  [' I Z ~ Z ~ ~ ~ ~ ~  - iZ3Z4eiT + c.c.] o&e2 + 0 ( e 3 )  . 

(6.3) 

(6.4) 

Substituting from (4.14)-(4.16) we therefore obtain 

The time dependence of the centroid velocity in the range where chaos occurs is 
plotted in figure 10. 

7. Conclusions 
The mechanism envisaged herein appears to confirm that Benjamin & Ellis' (1990) 

suggestion can indeed explain the origin of the 'erratic drift' phenomenon. However, 
one should be aware that a variety of similar but distinct mechanisms may operate 
as the frequency and amplitude of the acoustic excitation are varied. They encom- 
pass two-mode interactions of the subharmonic-subharmonic or of synchronous- 
synchronous type which lead to amplitude equations with cubic coupling. An attempt 
at such analysis was made by Norris (1991). As E increases one may reasonably 
expect the involvement of an increasing number of modes in the interaction process. 
A complete understanding of the phenomenon does indeed require a full numerical 
solution of the problem, a task which we are at present undertaking. The interesting 
question we would like to answer is to what extent, in the present process, chaos is 
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t* (9 

dependent on the low-dimensional nature of the problem that we generate when we 
restrict ourselves to weakly nonlinear conditions. 

Further some unexplained aspects of the process still await an answer. In particular 
the role of viscous effects for large-amplitude shape oscillations does not appear to 
have received attention either in the axially symmetric (bubble) or in the plane 
(Faraday resonance) case. 

To what extent the experimental observations, which concern the behaviour of 
bubbles within a mixture, may be interpreted by considering the response of an 
isolated bubble subject to acoustic excitation is also a fairly open subject which will 
require attention in the near future. 

This work is part of the junior author’s (D. Z.) thesis to be submitted to the 
University of Genoa in partial fulfillment of the requirements for the PhD degree in 
Hydrodynamics. 

The authors wish to acknowledge Professor L. Van Wijngaarden and Professor W. 
Lauterborn for providing useful references on topics related to that discsussed in the 
present paper. 
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